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Transfer-matrix summation of path integrals for transport through nanostructures
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On the basis of the method of iterative summation of path integrals (ISPI), we develop a numerically exact
transfer-matrix method to describe the nonequilibrium properties of interacting quantum-dot systems. For this,
we map the ISPI scheme to a transfer-matrix approach, which is more accessible to physical interpretation,
allows for a more transparent formulation of the theory, and substantially improves the efficiency. In particular,
the stationary limit is directly implemented, without the need of extrapolation. The resulting method, referred
to as “transfer-matrix summation of path integrals” (TraSPI), is then applied to resonant electronic transport
through a single-level quantum dot.
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I. INTRODUCTION

Quantum-dot systems have been well studied both exper-
imentally and theoretically for over 30 years. Their optical
properties, namely, the quantum size effect, make them use-
ful for commercial applications within liquid crystal displays
[1]. The tunability of their electrical properties allows one
to control single electrons [2] and gives rise to a number
of effects such as the Coulomb blockade, the Kondo effect,
tunnel magnetoresistance, and Andreev bound states [3], on
which versatile electronic and spintronic quantum-dot devices
such as a single-electron transistor [4,5], a quantum-dot spin
valve [6,7], and a Cooper-pair splitter [8–10] are based.

In order to study resonant transport in interacting quantum-
dot setups, a method called “iterative summation of path
integrals” (ISPI) was developed [11–13]. ISPI is an exact-
enumeration method that is based on the systematic truncation
of correlations decaying exponentially in time. The ISPI
method is well suited to study quantum-dot systems at finite
temperature, including both equilibrium and nonequilibrium,
in the regime in which various energy scales, e.g., associated
with Coulomb interaction, temperature, and transport voltage,
are of the same order of magnitude and, therefore, lack a
clear separation. The ISPI scheme was first introduced to
discuss nonequilibrium transport through the Anderson model
[11,12]. Applying the method to the Anderson-Holstein
model, where the quantum dot is coupled to a phonon mode,
demonstrated the impact on the Franck-Condon blockade,
when entering the quantum-coherent regime [14]. Recently,
the ISPI method was applied to quantum-dot spin valves,
demonstrating the importance of resonant effects in the tunnel
magnetoresistance as well as unveiling interaction-induced
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current asymmetries caused by an interaction-induced ex-
change field [13,15]. A comparison of ISPI with other
methods was done in [16].

The purpose of this paper is to develop the ISPI scheme
further. We show that the necessary truncation of correla-
tions motivates a mapping of ISPI to a transfer-matrix (TM)
approach, which by construction is formulated in the sta-
tionary limit, such that extrapolation of finite-time results is
not needed anymore. We develop the theoretical cornerstones
of this method, referred to as “transfer-matrix summation
of path integrals” (TraSPI). In order to keep the discus-
sion transparent, we exemplify the method for a system
with relatively few degrees of freedom, namely the Ander-
son model describing a single-level quantum dot coupled
to two normal metal leads. We, however, emphasize that
the concepts discussed in this paper are not limited to this
simple model, but can easily be transferred to other more
intricate setups, such as hybrid quantum-dot systems involv-
ing superconducting and/or ferromagnetic leads [6–10] and
quantum-dot Aharonov-Bohm interferometers [17–19], just to
name a few.

Single-electron transistors that utilize a quantum dot as an
island have gathered a lot of attention throughout the years
and are still under heavy investigation, both experimentally
and theoretically. To mention just a few recent examples,
a single-electron transistor consisting of a quantum dot and
normal metal leads was realized experimentally to demon-
strate that shot noise in a single-electron transistor can be
reduced significantly via feedback control, which should al-
low the construction of efficient, nanoscale thermoelectric
devices [20]. Furthermore, if the quantum dot is periodically
driven via a gate voltage, it is possible to accurately control
the dot’s emission time statistics [21]. For a system in which
the quantum dot is coupled to a single lead only, the quantum
dot can be driven out of equilibrium via a plunger gate voltage,
which allows the measurement of the free energy of a confined
electron in order to study thermodynamics on the microscopic
level [22]. For a superconducting single-electron transistor, an
attractive interaction was found that survives even far beyond
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the superconducting regime [23,24]. Employing the method
of full-counting statistics for a negative-U Anderson model, it
was shown that this phenomenon is robust, even for fast spin
relaxation [25].

On a theoretical basis, different approaches are used
and actively developed to study different parameter regimes
of quantum-dot systems. The method of dynamical mean
field theory is advanced and combined with other meth-
ods, such as functional renormalization group (RG) theory,
to increase the predictive power of the method, even for
strong and nonlocal electron correlations [26]. Perturbation
theory in the tunnel coupling strength � within a master-
equation approach has proven highly useful in the description
of quantum-dot systems. This method is developed further
in different directions, e.g., by introducing SU(N)-invariant
kinetic equations to effectively study multilevel quantum dots
[27] or by improving on the commonly used rotating-wave
approximation, leading to a so-called coherent approximation
[28]. While perturbative methods often allow for at least a
qualitative description, nonperturbative effects are, by con-
struction, beyond their scope. To cover them, numerically
exact methods are in high demand. Several approaches are
known to tackle this problem. Quantum Monte Carlo sim-
ulations were advanced to reach the stationary regime for
systems in nonequilibrium [29,30]. Different flavors of RG
theory have been applied to quantum-dot systems almost
since the inception of their theoretical discussion [31]. Since
then significant advances have been made to the formal-
ism: A combination of numerical RG and time-dependent
density-matrix RG allows one to discuss the nonequilibrium
steady state transport properties of quantum-dot systems [32],
while within functional RG it was possible to approximate
the flow of the Luttinger-Ward functional while maintaining
conservation laws [33]. Finally, it was shown that density
functional theory is able to study out-of-equilibrium trans-
port theories, even in strongly correlated systems, such as
the Anderson model [34], while a quasiparticle Fermi-liquid
theory can be used to work within the low-energy limit of such
systems [35].

The paper is structured as follows. In Sec. II we
introduce the Hamiltonian of the Anderson model and
derive the path-integral formulation of the generating func-
tion, as well as its discrete counterpart. We demonstrate
how interactions are decoupled via a discrete Hubbard-
Stratonovich (HS) transformation and then solve the path
integral. In Sec. III we discuss the main ideas behind the
ISPI and TraSPI schemes, namely, the systematic trunca-
tion of exponentially decaying correlations after a memory
time tK , as well as the subsequent block factorization of
the Keldysh partition function. We then demonstrate how
the ISPI scheme can be mapped to a transfer-matrix ap-
proach, and discuss the main benefits of this formulation in
Sec. III C. We finish this section with a description of the
two-step extrapolation procedure that eliminates both the in-
troduced discretization error as well as the truncation error,
and therefore ensures that the results obtained via the TraSPI
scheme are numerically exact within the accuracy of the
eigensystem calculation. In Sec. IV we discuss the results for
the Anderson model, obtained via TraSPI. First, we discuss
current based observables, like the current and the conduc-

tance, and after that the dot’s occupation number. Finally, we
conclude in Sec. V.

II. MODEL

We write the well-known Hamiltonian for an interacting,
single-level quantum dot that is tunnel coupled to two metallic
leads in the form [11,36] (we set h̄ = 1 throughout this paper)

H =
∑

σ

ε0,σ n̂σ − U

2
(n̂↑ − n̂↓)2

+
∑
αkσ

εαkĉ†
αkσ ĉαkσ +

∑
αkσ

(
tα ĉ†

αkσ d̂σ + H.c.
)
. (1)

The on-site occupation-number operator is given by n̂σ =
d̂†

σ d̂σ , where d̂†
σ and d̂σ create or annihilate an electron on the

quantum dot with spin σ =↑,↓, respectively. The Coulomb
interaction strength is given by U . In Eq. (1) we made use of
the operator identity n̂↑n̂↓ = 1

2 (n̂↑ + n̂↓) − 1
2 (n̂↑ − n̂↓)2 and

incorporated the terms linear in n̂σ by shifting the energy
of the quantum dot’s level, such that ε0,σ = ε0 + σB/2 with
ε0 = E0 + U/2, where the bare energy level E0 in the ab-
sence of magnetic field B and Coulomb interaction can be
tuned via a gate voltage. To write the interaction in terms
of n̂↑ − n̂↓ turns out to be advantageous for the discrete
Hubbard-Stratonovich transformation, introduced later on.
An electron with energy εαk = εk − μα in lead α = (L, R)
and with momentum k is created or annihilated by the op-
erators ĉ†

αkσ and ĉαkσ , respectively. Finally, tα denotes the
tunnel coupling between lead α and the quantum dot. The
tunnel coupling strength between quantum dot and lead α

is given by �α = 2π |tα|2ρ(εF
αk ), where ρ(εF

αk ) denotes the
density of states of lead α at the Fermi level. We work
in the wide-band limit, which usually is a good approximation
in the stationary regime [37]. We also assume a symmetric
setup, where � = �L = �R and where the chemical potential
of the leads are given by the bias voltage μα = ±eV/2, for the
left and right lead, respectively.

A. Path-integral formulation

We are interested in discussing time-local observables,
namely the current, the quantum dot’s occupation number,
and its spin-projector expectation value in the stationary limit.
The latter is achieved for tb → ∞, where tb = tm − t1 (before)
is the time interval between the initialization and the mea-
surement time tm, while ta = tN − tm (after) denotes the time
interval between tm and the Keldysh return time tN . Nonequi-
librium properties are taken into account within a functional
integral formulation on the Keldysh contour C (see Fig. 1)
[13,38,39]. To take the forward and backward branch of the
Keldysh contour into account, it is useful to define τ = (t, ν),
with physical time t and Keldysh branch index ν = ±, with
+ and − representing the upper and lower Keldysh contour,
respectively.

For any time-local observable Ô at measurement time tm,
we introduce a source term ηO(tm), with η ∈ R, in order to
break time-translation symmetry on the level of the system’s
action S in a specific way. This allows us to calculate the
expectation value of said observable via a derivative of the
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FIG. 1. The Keldysh contour C with the measurement time tm at
its center. The contour gets discretized into a total of 2N time steps
of size δt .

system’s Keldysh generating functional:

〈Ô〉 = ∂

∂η
ln Z[η]

∣∣∣∣
η=0

. (2)

The Keldysh generating functional for the Hamiltonian given
in Eq. (1) takes the form

Z[η] =
∫

D[d, c] eiS+ηO(tm ), (3)

and fulfills Z[0] = 1 by construction. The functional integral
is built in the basis of fermionic coherent states |(τ )〉, being
defined via the eigenvalue equations of the fermionic annihi-
lation operators:

d̂σ |(τ )〉 = dσ (τ )|(τ )〉, (4a)

ĉαkσ |(τ )〉 = cαkσ (τ )|(τ )〉. (4b)

As a result, the action S and the source term ηO(tm) in
Eq. (3) are functions of the Grassmann fields d̄σ (τ ), dσ (τ ),
c̄αkσ (τ ), and cαkσ (τ ), and the functional integral runs over all
of these degrees of freedom [12,13,38]. Dropping the explicit
τ dependency, the action takes the form

S =
∫

C
dt

[ ∑
σ

d̄σ (i∂t − ε0,σ )dσ − U

2
(n↑ − n↓)2

+
∑
αkσ

c̄αkσ (i∂t − εαk )cαkσ +
∑
αkσ

(tα c̄αkσ dσ + H.c.)

]
.

(5)

Performing the integral in Eq. (3) does not pose any
challenge to the terms contributed by the leads’ and the tun-
neling Hamiltonian, since they are quadratic in the Grassmann
fields. However, the quartic on-site interaction term has to be
tackled via a discrete HS transformation [40–42]. For this,
we first discretize the Keldysh contour into 2N time slices
of length δt (see Fig. 1), and then perform a discrete HS
transformation,

e− 1
2 iνδtU (n↑−n↓ )2 = 1

2

∑
s=±1

e−sζν (n↑−n↓ ), (6)

on each of these 2N slices, keeping in mind that nσ can
only assume the values 0 and 1. This decouples the inter-

action term, at the cost of introducing one Ising-like degree
of freedom, s = ±1, per time slice. The HS parameter ζν is
determined uniquely for 0 � δtU < π via [12,13]

cosh ζν = e− 1
2 iνδtU . (7)

As a result, we have introduced 2N new HS spins but are able
to also integrate over the dot degrees of freedom, solving the
functional integral in Eq. (3). We find

Ž[η] =
∑

	s
det D[η, 	s ], (8)

with the discretized generating functional Ž[η] ∝ Z[η], and
with the matrix [12,13]

D[η, 	s ] = S[�−1 − S�C + η�O]� (9a)

= S − �C� + ηS�O� (9b)

= S − �̃C + ηS�̃O. (9c)

For this we used the HS spin vector

	s = (
s+

1 , s−
1 , s+

2 , s−
2 , . . . , s+

N , s−
N

)
, (10)

such that the sum includes all 22N possible spin configurations
along the discretized Keldysh contour. In addition, we intro-
duced several matrices: We identify the inverse time-discrete
Green’s function �−1 = �−1

0 − �T of the noninteracting
setup, where �0 is the free dot’s Green function, and �T =∑

α �T,α is the tunneling self-energy. In addition, we intro-
duced the charging self-energy S�C with the diagonal spin
matrix S = diag(	s ) ⊗ σz, which is the only part depending on
the HS spins 	s, as well as the source self-energy �O, which is
included to account for the source term. We also made use of
the shorthands �̃C = �C� and �̃O = �O� for later conve-
nience. All of these matrices have dimensions 4N×4N due to
the Trotter slicing (see Fig. 1) and the spin degree of freedom.

Note that we modified the generating functional by
absorbing the factor 1

2 per spin from Eq. (6). Additionally,
we have multiplied S from the left and � from the right in
Eq. (9). These changes do not affect the expectation value
of the observable, since det S = 1 and det � = const, which
cancels due to the logarithmic derivative in Eq. (2). However,
multiplying by � ensures that D[η, 	s ] decays exponentially,
while through the multiplication with S the HS spins are
located only on the diagonal of D[η, 	s ] as well as on the
parts affected by the source self-energy. The first property
will be crucial when implementing the ISPI scheme, while
the second is useful for an efficient implementation of the
transfer-matrix formulation.

B. Form of the matrices

To specify the elements of the matrices in Eq. (9a) we em-
ploy the basis (n, ν, σ ), where the Trotter index n = 1, . . . , N
labels the time slice, the Keldysh index ν = ± distinguishes
the upper from the lower Keldysh contour, and σ =↑,↓
denotes the spin. In this basis, the Green’s function of the
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noninteracting quantum dot in the presence of leads is given
as1

� =
[ ∫

dω

2π
e−iω(n−n′ )δt

{
σz ⊗

[
(ω − ε0)σ0 − B

2
σz

]

− γ+(ω) ⊗ σ0

}−1]
nn′

, (11)

with γ±(ω) = γL(ω) ± γR(ω), where γα (ω) denotes the 2×2
Keldysh matrix

γα (ω) = i

2
�α

(
2 fα (ω) − 1 − 2 fα (ω)

−2 fα (ω) + 2 2 fα (ω) − 1

)
, (12)

and σz and σ0 are the Pauli matrices, acting on either Keldysh
or spin space if they appear on the left or on the right of the
tensor product, respectively. The Fermi function fα (ω) =
{exp[β(ω − μα )] + 1}−1 describes the equilibrium occupa-
tion distribution of lead α. Note that due to the symmetric
discretization of the derivative ∂t → ω−1 in frequency space,
the discretized advanced and retarded Green’s functions have
the diagonal |�a,r|nn = 1

2 instead of 1, such that det(2�) = 1.
The charging self-energy S�C is time local and therefore a

diagonal matrix, with

�C = diag

[
i

(
ζ+ 0
0 ζ−

)
⊗ σ0

]
n

. (13)

The form of the source self-energy �O is based on the ob-
servable of interest Ô, since it is derived from its source term
ηO(tm). The source self-energies for the occupation number,
the spin projection in the z direction, and the current were
derived in earlier works [11–13,15]. As a result, we only
present the results here, and refer to the aforementioned ref-
erences for a more detailed derivation. Assuming we include
the measurement on the Trotter slice m = tm/δt , we find for
the occupation number N̂ = ∑

σ n̂σ and for the spin projection
Ŝz = 1

2 (n̂↑ − n̂↓) [15]

�N =
[

δnmδn′m

(
0 0
1 0

)
⊗ σ0

]
nn′

, (14a)

�Sz =
[

δnmδn′m

(
0 0
1 0

)
⊗ σz

2

]
nn′

. (14b)

These are sparse matrices, containing only two nonzero
elements. Finally, the current operator is given by Î =
−ie/2

∑
αkσ αtα (ĉ†

αkσ d̂σ − d̂†
σ ĉαkσ ), with its source term

given by [11–13]

�I = e

2
Re

[
iδnm

∫
dω

2π

[σzγ−(ω)] ⊗ σ0

eiω(n−n′ )δt

]
nn′

. (14c)

Note that the source self-energy for the current operator is a
sparse matrix, too, with only one row m having nonvanishing
elements.

1We use the notation A = [ann′ ]nn′ to build the matrix A from its
elements a.

FIG. 2. The system’s dressed, noninteracting Green’s function �

as a function of time (t − t ′) for parameters kBT = 0.2 �, ε0 = 0,
eV = �, B = 0. The dotted line is an exponential fit for the envelope
function according to |�| ∝ exp(−|t − t ′|/ξ0 ). Inset: Correlation
time ξ0 of the envelope function for the noninteracting system as a
function of temperature kBT . Other parameters are the same as in the
main panel.

III. METHOD

A. Truncation of matrix D

The sum in Eq. (8) runs over all configurations of the
2N HS spins, with N usually being of the order of sev-
eral hundred. Summing over these 22N configurations is an
insurmountable task, and approximations are in order. The
approximation for the ISPI scheme is based on the fact that
lead-induced correlations decay exponentially with time at
finite temperatures [11,12]. As a consequence the system’s
noninteracting Green’s function �—and with it D[η, 	s ]—also
decays exponentially with time |t − t ′|. This is shown in the
main panel of Fig. 2, where the absolute value of �+− is plot-
ted against |t − t ′| for the parameter set kBT = 0.2 �, ε0 = 0,
eV = �, B = 0, and δt → 0. While for low temperatures one
finds large oscillations as seen in the figure, the enveloping
function still decays exponentially, as long as kBT > 0. We
demonstrate this temperature dependence of the correlations’
decay in the inset of Fig. 2, where the correlation time ξ0 of the
enveloping function is plotted as a function of temperature.

This motivates us to truncate the interacting Green’s func-
tion Eq. (9), such that

D[η, 	s ] =

⎡
⎢⎢⎢⎣

D1(	s1) D+
1

D−
2 D2(	s2) D+

2

D−
3

. . .
. . .

. . . DL(	sL )

⎤
⎥⎥⎥⎦ (15)

is a block-tridiagonal matrix with 4K×4K blocks D(±)
� , where

� = 1, . . . , L and L = N/K . The number of Trotter slices
within one block, K = tK/δt , depends on a chosen memory
time tK and the Trotter step size δt . Since only row m in Eq. (9)
is affected by the source self-energy [see Eq. (14)], this also
holds true for the block matrix, where only the block row m̃
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containing row m is affected by the source self-energy. We
also introduced the block spins 	s�, each consisting of a set of
2K HS spins, such that 	s = (	s1, . . . , 	sL ) [see Eq. (10)].

Using this truncation we are now able to formulate the ISPI
scheme, which was first applied to the Anderson model in
Ref. [11] and later employed to study the Anderson-Holstein
model [14], and the quantum-dot spin valve [13,15]. We
introduce the main ideas in the next section, and refer to
any of the aforementioned references for a more complete
discussion. After that we introduce the mapping of the ISPI
method to a transfer-matrix method, which by construction
directly addresses the stationary limit and drastically increases
the computational performance.

B. ISPI formulation

As can be seen in Eq. (8) one has to calculate the determi-
nant of the block-tridiagonal matrix from Eq. (15). According
to Ref. [43] such a determinant can be evaluated iteratively via

ŽL[η] =
∑

	s

L∏
�=1

det Č�(	s1:�), (16)

where 	s1:� = {	s1, . . . , 	s�}, and

Č�(	s1:�) = D�(	s�) − D−
� Č−1

�−1(	s1:�−1) D+
�−1 (17)

denotes the Schur complement in the �th step, with Č1(	s1:1) =
D1(	s1) and � = 2, . . . , L. Therefore, each Č� depends on all
previous Čk , with k < �, and since the spins are distributed
diagonally, Eq. (17) connects 	s� with all previous 	sk . To re-
main consistent with the idea of truncating correlations after
the memory time tK , we approximate Č�(	s1:�) by [11,13]

C�(	s�−1, 	s�) = D�(	s�) − D−
� D−1

�−1(	s�−1) D+
�−1, (18)

that is, in Eq. (17) we replace Č−1
�−1(	s1:�−1) with D−1

�−1(	s�−1),
which only depends on 	s�−1. Therefore, C� only connects 	s�−1

and 	s�, effectively truncating interaction-induced correlations
after the memory time tK . As a result, we are able to rewrite
Eq. (16), finding

ŽL[η] =
∑
	s1

det D1(	s1)
∑
	s2

det C2(	s1, 	s2)

× · · · ×
∑
	sL

det CL(	sL−1, 	sL ). (19)

Note that we used the fact that each C� depends only on the
two block spins 	s�−1 and 	s�, allowing us to evaluate L sums
over M = 22K spin configurations, instead of the much larger
sum over 22N configurations. Since we can choose K � N ,
this is a huge reduction of complexity, allowing us to evaluate
the generating functional Ž[η] for much larger values of N .

ISPI can be characterized as a finite-time implementation
due to the finite length of the considered Keldysh contour as
depicted in Fig. 1. In order to reach the stationary limit, the
time tb before the measurement has to be chosen large enough
such that the system has relaxed from any arbitrary initial
state to its stationary state. This can be ensured by choosing
�tb � 1, depending on the system under consideration. For
the Anderson model, we find that a time interval of �tb = 15
is sufficient.

The finite-time implementation has the disadvantage that,
first, one needs to carefully choose for each calculation the
proper time interval to make sure that the stationary limit has
been achieved. Second, increasing the time interval (due to
larger relaxation times) increases the computational cost. The
TraSPI formulation, put forward in this paper, is motivated by
the desire to directly perform the limit tb → ∞ analytically by
using transfer matrices. This strategy does not only strongly
decrease the computational cost but has also other benefits, as
described in the next section.

C. TraSPI formulation

The term “transfer matrix” is reminiscent of the transfer-
matrix method known from statistical physics, which was first
introduced to solve the one-dimensional Ising model [44,45]
and later used by Onsager as the basis for his well-known
exact solution of the two-dimensional Ising model [46,47] (for
a recent application see, e.g., [48,49]). In fact, Eq. (19) is the
basis for a mapping of the ISPI scheme to a transfer-matrix
formulation, which we derive here.

First, we reiterate that each C� depends on two block spins
	s�−1 and 	s�, while D1 depends only on 	s1. Therefore, the
shape of Eq. (19) suggests rewriting it into a matrix product
in the space of HS spin configurations. For this, we enumer-
ate the M different configurations of the block spins 	s� by
μ = 0, . . . , M−1, such that, e.g., μ = 0 corresponds to 2K
HS spins pointing up, 	s� = (1, . . . , 1). In addition, we write
f�(μ) instead of f�(	s�) for any function that depends on the
HS spins, in order to keep the notation compact. With this, we
define the M×M TM:

T�−1,� = [det C�(μ,μ′) ]μμ′ . (20)

Thus, each row corresponds to one of the M configurations
μ of the block spin 	s�−1 and each column corresponds to one
of the M configurations μ′ of 	s�. If we additionally define the
two vectors

〈v| = [det D1(μ) ]μ, (21a)

|1〉 = [1]μ, (21b)

then the Keldysh generating functional (19) takes the simple
matrix-product form

ŽL[η] = 〈v|T1,2T2,3 · · · TL−1,L|1〉, (22)

and each multiplication with T�−1,� corresponds to one term∑
	s�

det C�(	s�−1, 	s�) in Eq. (19).
In the next step, we symmetrize Eq. (22) by introducing

two transfer matrices U�−1,� and V�. For this, we reinspect the
definition (18) of C�, the determinant of which provides the
elements of T�−1,�, noting that it has the well-known form of
the Schur complement of a part of the tridiagonal block matrix
D[η, 	s ], given by

D�−1,�(μ,μ′) =
[

D�−1(μ) D+
�−1

D−
� D�(μ′)

]
. (23)

This is a 2×2 block matrix, affected by the block spins 	s�−1

and 	s�. Thus, we are able to rewrite det C� as the quotient of
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two determinants:

det C�(μ,μ′) = det D�−1,�(μ,μ′)
det D�−1(μ)

. (24)

Returning to the transfer-matrix formalism, this corresponds
to the matrix product

T�−1,� = V−1
�−1U�−1,�, (25)

where U�−1,� is a dense M×M transfer matrix and V� is a
M×M diagonal matrix:

U�−1,� = [det D�−1,�(μ,μ′) ]μμ′, (26a)

V� = diag[det D�(μ)]μ. (26b)

Building the generating functional with these, we get a sym-
metrized version of Eq. (22):

ŽL[η] = 〈1|U1,2V−1
2 U2,3 · · · V−1

L−1UL−1,L|1〉, (27)

where we used the fact that 〈v| = 〈1|V1. We emphasize that
to this point Eqs. (19), (22), and (27) are synonymous, and
no additional assumptions have been made. In Fig. 3 we
show a sketch of the elements of D[η, 	s ] that are taken into
account for the case L = K = 5. Each of the small 1×1 boxes
represents a single time slice of D[η, 	s ] (thus a 4×4 block, to
take spin and Keldysh into account).

The number of matrices entering Eq. (27) increases linearly
with L. To achieve the stationary limit, we have to choose
L large. We now improve upon this: (i) we perform the
stationary limit analytically, (ii) we optimize the position of
the measurement, (iii) we calculate the derivative of ∂

∂η
ŽL[η]

at η = 0 analytically, and (iv) we implement a differential
measurement method.

1. Stationary limit

From this point on we are interested in the case that the
system reached the stationary limit, i.e., we perform the limit
tb → ∞. In order to perform this limit, we start with an
index shift by m̃ in the block indices (�, m̃)old → (�, m̃)new =
(� − m̃, 0), such that the measurement block becomes m̃ = 0
and � = −Lb − 1, . . . , La + 1, with Lb + La = L − 3. Note
that Lb and La denote the number of TMs T before and after
the measurement, respectively.

In the next step, we make use of the fact that the system is
symmetric under time translation as long as the source term
is not included, i.e., as long as η = 0. As a consequence, the
noninteracting Green’s function � obeys �n,n′ = �n+1,n′+1.
Thus, for the tridiagonal matrix D[0, 	s ] we equally find that
D�(μ) and D±

� are independent of �. With this and Eqs. (18)
and (23), we find that due to time-translation symmetry the
transfer matrices fulfill T�−1,� = T, U�−1,� = U, and V� = V
for all � �= 0, 1.

However, the source term was implemented to specifically
break this time-translation symmetry, and therefore whenever
an element of D[η, 	s ] is affected by the source self-energy
�O, the above relations do not hold anymore. We mentioned
before that for time-local observables, the source self-energy
affects only the matrices D±

0 and D0(	s0) at most. Conse-
quently, only the transfer matrices acting at position m̃ = 0,
i.e., T−1,0, T0,1, U−1,0, U0,1, and V0, are affected by the source

(a)

(b)

(c)

FIG. 3. (a) Sketch of the elements of D[η, 	s ] after the trunca-
tion Eq. (15), for the case L = K = 5. Small boxes represent 4×4
matrices spanned by the Keldysh and spin space, while saturation
depicts the absolute value of the elements. Dark red boxes carry HS
spins sν

n , blue boxes are affected by the source self-energy and carry
HS spins sν

m, and gray boxes are not affected by the source term or
by the HS spins. The blue solid borders represent elements included
in the TM U�−1,�, whereas the green dashed borders represent ele-
ments included in the TM V�. For these, lighter colors denote TMs
affected by the source term at tm. (b), (c) Graphical representations of
Eqs. (22) and (27), respectively. The TM T (orange) first propagates
one step of size tK backwards in time, followed by two steps in the
forward direction. The TM U (blue) propagates two steps of size tK

forward in time, while V and V−1 (green) are propagating one step
forward or backward, respectively.

term and are therefore different from the others (see Fig. 3).
We find

ŽL[η] = 〈v|TLb T−1,0T0,1TLa |1〉. (28)

To reach the stationary limit tb → ∞, we now can take the
limit L → ∞, meaning we let both Lb → ∞ and La → ∞.
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FIG. 4. (a) The absolute value of the five leading eigenvalues of
the TM T as a function of the interaction strength U for �tK = 1.5
and K = 5. (b) The eigenvalue λ0 as a function of U for �tK = 1.5
and for different K (and therefore δt ). Dotted lines show the ap-
proximation (31). Shown is the parameter set given by kBT = 0.5 �,
ε0 = 0, eV = 0.1 �, B = 0. Different parameters produce similar
pictures.

For high powers of T we use the identity

lim
n→∞

Tn

λn
0

= lim
n→∞

∑
k�0

λn
k

λn
0

|λk〉〈λk| = |λ0〉〈λ0|, (29)

where λk are the eigenvalues of T = V−1U, with |λ0| >

|λ1| � . . ., while 〈λk| and |λk〉 are the respective left and
right eigenvectors, fulfilling 〈λk|λk′ 〉 = δkk′ . Likewise, we de-
fine 〈λ̃k| = 〈λk|V−1 and |λ̃k〉 = V|λk〉 as corresponding left
and right eigenvectors of UV−1 (with the same eigenvalues,
λ̃k = λk). Plugging this back into Eq. (28) and performing the
stationary limit, we find

Z∞[η]

Z∞[0]
= λ−2

0 〈λ0|T−1,0T0,1|λ0〉 (30a)

= λ−2
0 〈λ̃0|U−1,0V−1

0 U0,1|λ0〉. (30b)

In Fig. 4(a) we plot the absolute value of the largest five
eigenvalues of the TM T as a function of the Coulomb inter-
action strength U for the parameter set kBT = 0.5 �, ε0 = 0,
eV = 0.1 �, B = 0, �tK = 1.5, and K = 5. We find that the
largest eigenvalue is λ0 = M at U = 0, as would be expected,
since in the noninteracting limit the transfer matrix T is just
a M×M matrix, where each element is equal to 1. For finite
Coulomb interaction it scales with δU = δtU as

ln
λ0

M
= 3(K − 1)

32
δ2

U + O
(
δ3

U

)
(31)

for small δU . However, once U becomes large, we find occa-
sionally peaks where one of the lower eigenvalues diverges.
These divergences are not physical but are a consequence
of the discretization and truncation of the Green’s function.
We can track them down to elements of the diagonal matrix
TM V that vanish, resulting in divergences in V−1, and hence
in T. Nonetheless, the physical correct eigenvalue λ0 is still

present, and we choose that one (instead of the peaks) to cal-
culate the correct generating functional. To choose the correct
eigenvalue λ0 we make use of the fact that the corresponding
right eigenvector is |λ0〉 = |1〉 + O(δ3

U ) (see below). Thus,
we identify the correct eigenvalue by maximizing the overlap
of the corresponding right eigenvector with |1〉. In Fig. 4(b)
we plot this physically correct eigenvalue λ0 as a function of
U for different K . Only for U � 3 � the data get noisy, but
increasing K allows for the calculation of larger U .

The TraSPI formulation is a significant reduction in com-
plexity compared to the traditional, i.e., finite-time, ISPI
implementation: Instead of L − 1 dense transfer matrices, we
only have to evaluate the three dense TMs U, U−1,0, and U0,1,
as well as the two diagonal TMs V and V0. An additional
benefit of the UV decomposition (26) is that it allows for
an analytic evaluation of the derivative with respect to η.
Before, however, we demonstrate that we are able to shift
the measurement time to the end of the Keldysh contour in
order to reduce the number of necessary transfer matrices even
further.

2. Position of measurement

In Eq. (30), we assumed that the measurement is placed
somewhere in the middle of the Keldysh contour (see also
Fig. 1). However, based on causality, whatever happens at
physical times after the measurement must not have an impact
on the outcome of the measurement itself. In other words, the
time propagation ta along the Keldysh contour from tm to tN
and back to tm is unitary and should therefore cancel out (see
Fig. 1). As a consequence, it should not be detrimental to shift
the measurement time forward in time on the Keldysh contour,
until it is located at the rightmost point. In the words of the
TM formulation from Eq. (28), it should be sufficient to let
Lb → ∞ and set La = 0, or, when taking a look at the results
from Eq. (30), the vector |1〉 should be a right eigenvector of
the TM T.

However, this exact unitarity present in the continuum
limit (3) is violated by the Trotter discretization. Neverthe-
less, the error in the right eigenvector is quite small, |λ0〉 =
|1〉 + O(δ3

U ), and can be safely neglected, while the other
eigenvectors show a stronger dependency on δU . This means
that we are able to rewrite Eq. (30) as

Z∞[η]

Z∞[0]
= λ−2

0 〈λ0|T−1,0T0,1|1〉 (32a)

= λ−2
0 〈λ̃0|U−1,0V−1

0 U0,1|1〉. (32b)

Note that with this equation the measurement takes place
in the second to last 4K×4K block. If we actually measure
on the last possible Trotter slice, tm = tN , only a single TM
remains that is affected by the source term, resulting in the
even simpler expression

Z∞[η]

Z∞[0]
= λ−1

0 〈λ0|T−1,0|1〉 (33a)

= λ−1
0 〈λ̃0|U−1,0|1〉. (33b)

This means we are able to further reduce the number of
necessary TMs to the two fully occupied TMs U and U−1,0,
and one diagonal TM V. We now turn to deriving the analytic
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derivative with respect to η, necessary to calculate observables
from Eq. (33).

3. Analytic derivative

To calculate expectation values of observables via
Eq. (33b), we make again use of Eq. (2). We explicitly cal-
culate the derivative with respect to η here. If for some reason
we do not wish to position the measurement at the end of
the Keldysh contour, meaning we use Eq. (30b) instead of
Eq. (33b), calculations for the derivatives of the two remaining
TMs work analogously to those presented here. Performing
the derivative yields

〈Ô〉 = Z ′
∞[0]

Z∞[0]
= λ−1

0 〈λ̃0|U′
−1,0|λ0〉, (34)

where we wrote A′ for ∂
∂η

A|η=0. The derivative of a ma-
trix acts on its elements, which in this case are themselves
determinants of D�−1,�. Therefore, we make use of the iden-
tity (ln det A)′ = (det A)′/ det A = tr(A−1A′), and extend the
notation introduced for D�−1,�, Eq. (23), to other matrices,
meaning A�−1,� denotes a 2×2 part of a L×L block matrix
A. We further simplify the notation by writing A[2] = A�−1,�

if � �= 0, 1, which are 2×2 block matrices not affected by the
source term. With this we find for the derivative2

U′
−1,0 =

[
det D[2](μ,μ′)tr

D′
−1,0(μ,μ′)

D[2](μ,μ′)

]
μμ′

(35a)

=
[

tr
det

(
1 − S[2](μ,μ′)�̃C

[2]

)
�̃O

−1,0

1 − S[2](μ,μ′)�̃C
[2]

]
μμ′

, (35b)

where we plugged in D[2](μ,μ′) and D′
−1,0(μ,μ′) from (9),

and pulled the determinant inside the trace. Inserting Eq. (35b)
back into Eq. (34) allows for an analytic expression of the
derivative of the generating functional, and with it for the
expectation value.

When placing the measurement somewhere in the center of
the Keldysh contour [see Eq. (30b)], one would find that

〈Ô〉 = 〈Ô〉−1,0 + 〈Ô〉0,1 − 〈Ô〉0, (36)

where 〈Ô〉−1,0 is given by Eq. (34), while 〈Ô〉0,1 =
λ−1

0 〈λ̃0|U′
0,1|λ0〉 and 〈Ô〉0 = 〈λ̃0|V′

0|λ0〉. The respective
derivatives are then calculated in analogy to Eq. (35b).

Using the analytic derivative instead of a numeric deriva-
tive reduces numerical errors and of course allows for a more
straightforward implementation. We now continue to intro-
duce a differential measurement, to decrease the impact of
numerical errors.

4. Differential measurement

In a final step, we minimize discretization errors further
by only calculating a differential form of the observable of
interest. This means instead of the U -dependent observable
we only calculate the difference between the interacting case

2Note that we can safely write tr(A/B) even if [A, B] �= 0, as
tr(AB−1) = tr(B−1A).

and the noninteracting limit numerically, and get an improved
estimate

〈Ô〉 = O(0) + 〈Ô(U ) − Ô(U = 0)〉 (37)

for the considered observable. The analytic expectation values
O(0) for U = 0 are calculated by employing the Meir-
Wingreen formula [50,51] for the current and the dot’s lesser
Green’s function to account for occupation number and z
projection of the spin, leading to

I (0) = 2 �2
∫ ∞

−∞

dω

2π

p(ω)[ fL(ω) − fR(ω)]

[p(ω)2 − B2](ω − ε0)
, (38a)

N (0) = 2 �

∫ ∞

−∞

dω

2π

p(ω)[ fL(ω) + fR(ω)]

[p(ω)2 − B2](ω − ε0)
, (38b)

S(0)
z = B�

∫ ∞

−∞

dω

2π

fL(ω) + fR(ω)

[p(ω)2 − B2](ω − ε0)
, (38c)

where we defined p(ω) = [�2 + (ω − ε0)2]/(ω − ε0). Since
it is expected that the numerical calculation of the observable
at U = 0 has similar errors as in the interacting case, using
the differential measurement cancels these errors. This leads
to a significant reduction of numerical errors. The remaining
errors are then effectively eliminated during an extrapolation
procedure, which is discussed in the next section.

D. Two-step extrapolation

Throughout the derivation of Eq. (34), we introduced two
systematic errors; one is the Trotter error, caused by the finite
discretization length δt [52], and the other is the error intro-
duced by the truncation at memory time tK . However, both can
be eliminated using an extrapolation procedure which allows
us to provide numerically exact data. In earlier works [11,15],
different approaches were used for this extrapolation proce-
dure, the most common being a two-step regression, first for
δt → 0, and then with the resulting values for 1/tK → 0. We
refer to the aforementioned sources for a detailed discussion
of these procedures. The main problem of these procedures
is that the second regression 1/tK → 0 using a power series
ansatz is difficult to motivate. Therefore, we employ, in this
paper, a more sophisticated extrapolation procedure, that also
starts with a power series regression of δt → 0 but then uses
Aitken extrapolations [53], which are known to become exact
for purely exponential sequences.

The complete process is shown in Fig. 5 for the example of
the current as an observable and for the parameter set kBT =
0.5 �, ε0 = �, eV = 0.5 �, and U = 1.5 �.

First, we calculate the expectation value O of the observ-
able Ô for a fixed memory time tK and varying step size
δt . The result is a set of different realizations of the same
observable for this specific parameter set and memory time,
O(tK , δt = tK/K ) with K = 3, . . . , 8. It is well known that
Trotter errors are of the order δ2

t [52]. Consequently, we fit
O(tK , δt ) against a polynomial expression

O(tK , δt → 0) = lim
δt →0

n∑
j=0

c jδ
2 j
t , (39)

such that the observable with eliminated Trotter error O(tK )
is given by the constant c0 [see Fig. 5(a)]. Note that in the
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FIG. 5. The extrapolation procedure used to eliminate systematic
errors for the example of the current as an observable. (a) Regres-
sion of δ2

t → 0 to eliminate the Trotter error, for different tK with
K = 3, . . . , 8 and U = 1.5 �. The squares at δ2

t = 0 are the resulting
values of this procedure. They can be found again in the “original”
data set in (b), where the current is shown as a function of �tK . For
these data we employ the Aitken extrapolation (40) twice, shown as
“extrapolation 1” and “extrapolation 2”. From the mean of the data of
iteration 2 the limiting value tK → ∞ is received (shown as a dashed
line; the error estimate is of the order of the linewidth).

equation above it is sufficient to stop at n = 2, thus only taking
up to second order in δ2

t into account [11,15].
Having eliminated the Trotter error, we now turn to elimi-

nate the truncation error. For this, we repeat the first step for
different values of the memory time tK , with 1 � �tK � 2.
This leads to a set of realizations of the desired observable
O(tK ). As can be seen in Fig. 5(b), the observable as a
function of �tK converges exponentially against a limiting
value for tK → ∞, which is the numerically exact result of
the observable for one specific parameter set. This behavior
can be understood from the exponential decay of the Green’s
function � (see Fig. 2). For such exponentially converging
sequences the Aitken extrapolation works exceptionally well,
accelerating the convergence, which eventually leads to an
approximately constant sequence at the limiting value. The
Aitken extrapolation for a sequence fn is given by [53]

(A f )n+1 = fn − (�n fn)2

�2
n fn

, (40)

with forward differences [54] �n fn = fn+1 − fn. For fn we
use the set of realizations of the desired observable O(tK )
and find that after two Aitken extrapolations the data are
approximately constant around the numerically exact result
for sufficiently large values of tK . We use the mean value of
this sequence as the final result and its standard deviation as
an error estimate.

FIG. 6. The differential conductance as a function of the gate
voltage ε0 for different values of the Coulomb interaction strength U .
Shown is the regime of linear response, given by small bias voltages
eV = 0.1 �. Other parameters are kBT = 0.2 � and B = 0; shaded
areas are error estimates.

IV. RESULTS

Having introduced and extensively discussed the TraSPI
method, we now use it to calculate current-based and
occupation number-based observables of a single-level, inter-
acting quantum dot coupled to two normal leads. To make
interaction-induced effects more visible, we show derivatives
of the current and the occupation number with respect to the
bias voltage eV . These derivatives are calculated numerically
via central differences:

dO(V )

dV
= O(V + δV ) − O(V − δV )

2δV
+ O

(
δ2

V

)
, (41)

where we choose eδV � 0.01 �.
For all data sets we took memory sizes 1.0 � �tK � 2.5

and K = 3, . . . , 7 into account. Whenever this was not suffi-
cient to reach convergence, we included K = 8.

A. Differential conductance

We start the discussion of the conductance in the linear-
response regime with Fig. 6. There, the dI/dV is shown as a
function of the gate voltage ε0 for a small bias voltage eV =
0.1 �. The other parameters are given by kBT = 0.2 � and
B = 0. Each curve represents a different value of the Coulomb
interaction strength U , starting at U = 0, which is calculated
analytically [see Eq. (38)]. For such small bias voltages, we
are able to reach Coulomb interaction strengths of U � 2.5 �,
with the data sets still converging. For larger U it would be
necessary to take memory times �tK > 2.5 and thus larger K
into account. For the noninteracting case, we find a peak at
ε0 = 0, where the single level is within the transport window.
The peak height is, for the chosen parameters, at dI/dV ≈
1.81 e2/h. The deviation from the maximally possible value
of 2 e2/h is due to finite temperature. As ε0 moves away from
zero, the dot’s energy level is pushed out of the transport
window and the conductance drops significantly. When in-
creasing the interaction strength U , one would expect a level
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FIG. 7. The differential conductance as a function of the gate
voltage ε0 for different values of the Coulomb interaction strength
U . Parameters are kBT = 0.2 �, eV = 3 �, B = 0.

splitting for single and double occupation of the quantum dot,
and as a result two peaks at ε0 = ±U/2 in the dI/dV curves.
We do not reach high enough values of U to clearly resolve
this peak splitting, but we see that the central peak becomes
significantly broader. In addition, at ε0 = 0 the conductance
is suppressed with increasing U , with the maximal value for
U = 2.5 � being dI/dV = 1.623 ± 0.002 e2/h.

Next, we turn to the nonlinear-response regime. In Fig. 7,
we show the differential conductance for a large bias voltage
of eV = 3 �. The other parameters are as in Fig. 6. Due to
the large bias voltage, the ε0 dependence of the conductance
is more complex. For U = 0, there are two peaks at ε0 ≈
±eV/2 = ±1.5 �, reflecting the two resonance conditions of
the dot level matching the Fermi level of the left and right
electrode, respectively. The peaks are not perfectly centered
around ±eV/2 due to the finite width of the peaks. Since
the two peaks overlap, their maxima get pulled towards each
other.

At finite Coulomb interaction, there are, in principle, four
resonance conditions, given by ε0 ≈ ±eV/2 ± U/2. This ex-
plains that with increasing the Coulomb interaction U , the two
peaks are pushed away from each other. Simultaneously, the
peak heights decrease significantly. This is a consequence of
the reduced overlap of the peaks as they move away from each
other.

The most remarkable feature, however, is the appearance
of a third peak around ε0 = 0 for U > 2 �. This is due to
the fact that here U ≈ eV , and therefore at ε0 = 0 the singly
occupied state is in resonance with the right lead and the
doubly occupied state is in resonance with the left lead. Since
a noninteracting-electron picture only predicts two peaks, the
appearance of additional peaks is clear indication of Coulomb
interaction. However, a third (and ultimately a fourth) peak
can only be resolved for sufficiently large values of U . This
we could not achieve by using the finite-time implementation
of ISPI, but the TraSPI formulation now allows us to enter this
regime.

FIG. 8. The differential conductance as a function of the bias
voltage eV for different values of the Coulomb interaction strength.
Parameters are kBT = 0.2 �, ε0 = �, B = 0.

To address the crossover from the linear-response to the
nonlinear-response regime, we discuss in Fig. 8 the dif-
ferential conductance as a function of the bias voltage at
ε0 = �. The temperature is again kBT = 0.2 � and B = 0.
For vanishing Coulomb interaction, we find, as expected,
two peaks located at eV ≈ ±ε0 = ±�. With increasing
Coulomb interaction U , the differential conductance increases
in the linear-response regime but decreases in the nonlinear-
response regime, in accordance to our findings in Figs. 6
and 7.

We emphasize that the system under consideration is
particle-hole symmetric, such that the differential conduc-
tance dI/dV is an even function of both ε0 and eV . Both
symmetries are fulfilled perfectly by the TraSPI formalism up
to numerical accuracy.

B. Occupation number

We now address the average number of electrons on the
quantum dot. For low-lying ε0, the quantum dot is occupied
with two electrons. With increasing ε0, the occupation number
is reduced and ultimately the dot becomes empty.

In Fig. 9, we show the derivative of the occupation number
as a function of gate voltage in the nonlinear-response regime.
We choose the same parameters as in Fig. 7. Similarly as the
differential conductance is better suited to resolve detailed
structures, the derivative of the occupation number shows
more structure than the occupation number itself. In that re-
spect, Fig. 7 for the current and Fig. 9 for the occupation
number are analogous to each other. The peaks of dN/dV are
at the same positions as the peaks of dI/dV , indicating that a
large change of the current is accompanied with a large change
of the occupation number. With increasing U , the peaks move
away from each other, and the TraSPI formalism is able to
accurately describe the full region in between.

The numerical calculations of the conductance and the
occupation number are independent of each other. The in-
formation contained in these two quantities is partially the
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FIG. 9. The derivative of the occupation number with respect to
bias voltage in the nonlinear-response regime, eV = 3 �, as a func-
tion of gate voltage ε0. Shown are different values of the Coulomb
interaction strength U . Parameters are kBT = 0.2 �, B = 0.

same but in most transport regimes differs from each other
in detail. There is, however, one limit in which they carry
identical information. This occurs at zero temperature, T = 0,
and vanishing bias voltage V = 0. In this case, the electrons
transversing the quantum dot scatter only elastically, such that
Friedel’s sum rule can be applied, which leads to the Langreth
formula [55,56]:

dI

dV

∣∣∣∣
T,V =0

= 2e2

h

4 �L�R

(�L + �R)2
sin2

(
π

2
〈N〉

)
. (42)

This remarkable result is valid for any value of the interaction
strength U , covering all regimes from noninteracting electrons
to strong correlations, e.g., in the Kondo regime. The Langreth
formula is, in general, violated for any approximation scheme
that only includes a certain class of transport contributions.
However, for a numerically exact treatment, which includes
TraSPI, the Langreth formula serves as a consistency check to
assess the quality of the method.

In Fig. 10, we compare the linear conductance calculated in
two different ways: once directly and once via the calculation
of the occupation number and Langreth’s formula Eq. (42).
As stated above, Langreth’s formula holds at zero tempera-
ture. This regime can be accessed by TraSPI only away from
resonance, whereas close to the resonance condition ε0 = 0
numerical convergence is too slow. Therefore, we perform our
calculations at finite temperature, choosing kBT = 0.2 �, in
accordance with the previous figures.

We find very good agreement away from resonance, where
the influence of finite temperature on the conductance is
small. The deviation of the Langreth result Eq. (42) from
the direct calculation at resonance ε0 is fully understood as a
finite-temperature effect. In conclusion, Fig. 10 gives us
strong confidence in the quality of TraSPI as a numerically
exact method.

FIG. 10. The differential conductance for low bias voltage eV =
0.1 �, as a function of the gate voltage ε0 for different values of
the Coulomb interaction strength U . Comparison between the direct
result obtained via the TraSPI scheme (direct) and the result obtained
from Langreth’s formula (42). Parameters are kBT = 0.2 �, B = 0.

V. CONCLUSIONS

In the literature, there is a plethora of methods to de-
scribe quantum transport through nanostructures, which all
have their advantages and disadvantages in different regimes.
Some are restricted to the linear-response regime while others
can cover strong nonequilibrium situations. In scenarios with
a clear hierarchy of the involved parameters, a perturbation
expansion in one of them can be used. However, in real exper-
iments very often many of these parameters characterizing,
e.g., temperature, tunnel coupling strength, Coulomb interac-
tion, as well as gate and bias voltage are of the same order of
magnitude. Then, numerically exact methods are desirable.

In this paper, we presented TraSPI as such a numerically
exact method. It is based on an iterative summation of path
integrals, referred to as ISPI. The virtue of ISPI (and thus
also TraSPI) is that it naturally takes into account all orders
in tunneling of electrons between quantum dot and leads,
allows for arbitrary bias voltages that drive the system out of
equilibrium, is not restricted to either low or high temperature,
and is able to include finite Coulomb interaction. While the
method is numerically exact after a suitable extrapolation pro-
cedure, stronger correlations increase the convergence time,
such that both ISPI and TraSPI are best suited for small to
intermediate strengths of the Coulomb interaction. In previous
applications of the ISPI method [13,15], we concentrated on
spin-dependent phenomena, which show an interaction depen-
dence already for moderate Coulomb interaction strengths. To
increase the range of applicability towards stronger Coulomb
interaction strengths, the efficiency of the method needs to be
increased.

This we do in the present paper by mapping the ISPI
scheme to a transfer-matrix approach, which results in TraSPI.
The major virtue of involving transfer matrices is that the
stationary limit is implemented by construction. This avoids
the numerically costly extrapolation of the results of the
finite-time formulation as done in ISPI. In addition, the use
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of transfer matrices allows for further improvements that
enhance the efficiency of the method. Numerical effort is
reduced by optimally choosing the position of the measure-
ment in time. Furthermore, to minimize numerical errors, it
is advantageous to analytically implement derivatives, e.g., of
the current with respect to bias voltage to get the differential
conductance, instead of performing a numerical derivative of
the current. And finally, we reduce numerical errors by mak-
ing use of the possibility to calculate the noninteracting limit
analytically and to numerically calculate only the difference
between the interacting and the noninteracting case.

To illustrate the performance of the TraSPI method, we
analyzed the differential conductance through a single-level
quantum dot in both the linear and nonlinear regime. We were
able to reach values of the Coulomb-interaction strength that
are sufficient to resolve in the nonlinear response regime a

third conductance peak instead of only two peaks that are
expected for noninteracting electrons. Finally, we were able
to perform a quality check of TraSPI by demonstrating that
Langreth’s formula, which connects the zero-temperature, lin-
ear conductance with the dot’s occupation, is fulfilled in the
regime of its applicability range. Therefore, we are confident
that the TraSPI formulation enables us to address systems,
transport regimes, and effects that could not be covered by
previous methods.
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